• Foundations on sloping sites

    The natural surface of ground is rarely level to the extent that there may be an appreciable slope either across or along or both across and along the site of most buildings.

    On sloping sites an initial decision to be made is whether the ground floor is to be above ground at the highest point or partly sunk below ground as illustrated in Fig. 15.

    Fill and cut and fill

    Where the ground floor is to be at or just above ground level at the highest point, it is necessary to import some dry fill material such as broken brick or concrete hardcore to raise the level of the oversite concrete and floor. This fill will be placed, spread and consolidated up to the external wall once it has been built.

    The consolidated fill will impose some horizontal pressure on the wall. To make sure that the stability of the wall is adequate to withstand this lateral pressure it is recommended practice that the thickness of the wall should be at least a quarter of the height of the fill bearing on it as illustrated in Fig. 16. The thickness of a cavity wall is taken as the combined thickness of the two leaves unless the cavity is filed with concrete when the overall thickness is taken.

    Solid filling

    To reduce the amount of fill necessary under solid floors on sloping sites a system of cut and fill may be used as illustrated in Fig. 15. The disadvantage of this arrangement is that the ground floor is below ground level at the highest point and it is necessary to form an excavated dry area to collect and drain surface water that would otherwise run up to the wall and cause problems of dampness.

    Fill and cut and fill

    To economise in excavation and foundation walling on sloping sites where the subsoil, such as gravel and sand, is compact it is practice to use a stepped foundation as illustrated in Fig. 17, which contrasts diagrammatically the reduction in excavation and foundation walling of a level and a stepped foundation.

    Foundation on sloping site

    Figure 18 is an illustration of the stepped foundation for a small building on a sloping site where the subsoil is reasonably compact near the surface and will not be affected by volume changes. The foundation is stepped up the slope to minimise excavation and walling below ground.

    The foundation is stepped so that each step is no higher than the thickness of the concrete foundation and the foundation at the higher level overlaps the lower foundation by at least 300 mm.
    Stepped foundation
    The load bearing walls are raised and the foundation trenches around the walls backfilled with selected soil from the excavation. The concrete oversite and solid ground floor may be cast on granular fill no more than 600 mm deep or cast or placed as a suspended reinforced concrete slab. The drains shown at the back of the trench fill are laid to collect and drain water to the sides of the building.

  • Raft foundations

    A raft foundation consists of a raft of reinforced concrete under the whole of a building. This type of foundation is described as a raft in the sense that the concrete raft is cast on the surface of the ground which supports it, as water does a raft, and the foundation is not fixed by foundations carried down into the subsoil.

    Raft foundations may be used for buildings on compressible ground such as very soft clay, alluvial deposits and compressible fill material where strip, pad or pile foundations would not provide a stable foundation without excessive excavation. The reinforced concrete raft is designed to transmit the whole load of the building from the raft to the ground where the small spread loads will cause little if any appreciable settlement.

    The two types of raft foundation commonly used are the flat raft and the wide toe raft.

    The flat slab raft is of uniform thickness under the whole of the building and reinforced to spread the loads from the walls uniformly over the under surface to the ground. This type of raft may be used under small buildings such as bungalows and two storey houses where the comparatively small loads on foundations can be spread safely and economically under the rafts.

    The concrete raft is reinforced top and bottom against both upward and downward bending. Vegetable top soil is removed and a blinding layer of concrete 50 mm thick is spread and levelled to provide a base on which to cast the concrete raft. A waterproof membrane is laid, on the dry concrete blinding, against moisture rising into the raft. The top and bottom reinforcement is supported and spaced preparatory to placing the concrete which is spread, consolidated and finished level.
    When the reinforced concrete raft has dried and developed sufficient strength the walls are raised as illustrated in Fig. 12. The concrete raft is usually at least 150 mm thick.

    Raft foundations 1

    The concrete raft may be at ground level or finished just below the surface for appearance sake. Where floor finishes are to be laid on the raft a 50 mm thick layer of concrete is spread over the raft, between the walls, to raise the level and provide a level, smooth finish for floor coverings. As an alternative a raised floor may be constructed on top of the raft to raise the floor above ground.

    A flat slab recommended for building in areas subject to mining subsidence is similar to the flat slab, but cast on a bed of fine granular material 150 mm thick so that the raft is not keyed to the ground and is therefore unaffected by horizontal ground strains.

    Where the ground has poor compressibility and the loads on the foundations would require a thick, uneconomic flat slab, it is usual to cast the raft as a wide toe raft foundation. The raft is cast with a reinforced concrete, stiffening edge beam from which a reinforced concrete toe extends as a base for the external leaf of a cavity wall as shown in Fig. 13. The slab is thickened under internal load bearing walls.
    Vegetable top soil is removed and the exposed surface is cut away to roughly form the profile of the underside of the slab. As necessary 100 mm of hardcore or concrete is spread under the area of the raft and a 50 mm layer of blinding concrete is spread, shaped and levelled as a base for the raft and toes. A waterproof membrane is laid on the dried concrete blinding and the steel reinforcement fixed in position and supported preparatory to placing, compacting and levelling the concrete raft.

    Raft foundations 2

    The external cavity and internal solid walls are raised off the concrete raft once it has developed sufficient strength. The extended toe of the edge beam is shaped so that the external brick outer leaf of the cavity wall is finished below ground for appearance sake. A floor finish is laid on 50 mm concrete finish or a raised floor constructed.

  • Pad foundations

    On made up ground and ground with poor bearing capacity where a firm, natural bed of, for example, gravel or sand is some few metres below the surface, it may be economic to excavate for isolated piers of brick or concrete to support the load of buildings of some four storeys in height. The piers will be built at the angles, intersection of walls and under the more heavily loaded wall such as that between windows up the height of the building.

    Pits are excavated down to the necessary level, the sides of the excavation temporarily supported and isolated pads of concrete are cast in the bottom of the pits. Brick piers or reinforced concrete piers are built or cast on the pad foundations up to the underside of the reinforced concrete beams that support walls as illustrated in Fig. 11. The ground beams or foundation beams may be just below or at ground level, the walls being raised off the beams.

    Pad foundations

    The advantage of this system of foundation is that pockets of tipped stone or brick and concrete rubble that would obstruct bored piling may be removed as the pits are excavated and that the nature of the subsoil may be examined as the pits are dug to select a level of sound subsoil. This advantage may well be justification for this labour intensive and costly form of construction.

  • Strip foundations

    Strip foundations consist of a continuous strip, usually of concrete, formed centrally under load bearing walls. This continuous strip serves as a level base on which the wall is built and is of such a width as is necessary to spread the load on the foundations to an area of subsoil capable of supporting the load without undue compaction. Concrete is the material principally used today for foundations as it can readily be placed, spread and levelled in foundation trenches, to provide a base for walls, and it develops adequate compressive strength as it hardens to support the load on foundations. Before Portland cement was manufactured, strip foundations of brick were common, the brick foundation being built directly off firm subsoil or built on a bed of natural stones.

    The width of a concrete strip foundation depends on the bearing capacity of the subsoil and the load on the foundations. The greater the bearing capacity of the subsoil the less the width of the foundation for the same load.

    A table in Approved Document A to the Building Regulations sets out the recommended minimum width of concrete strip foundations related to six specified categories of subsoil and calculated total loads on foundations as a form of ready reckoner. The widths vary from 250 mm for a load of not more than 20 kN/linear metre of wall on compact gravel or sand through 450 mm for loads of 40 kN/linear metre on firm clay, to 850 mm for loads not exceeding 30 kN/linear metre on soft silt, clay or sandy clay.

    The dimensions given are indicative of what might be acceptable in the conditions specified rather than absolutes to be accepted regardless of the conditions prevailing on individual sites.

    Strip foundation

    The strip foundation for a cavity external wall and a solid internal, load bearing wall illustrated in Fig. 6 would be similar to the width recommended in the Advisory Document for a firm clay subsoil when the load on the foundations is no more than 50 kN/linear metre. In practice the linear load on the foundation of a house would be appreciably less than 50 kN/linear metre and the foundation may well be made wider than the minimum requirement for the convenience of filling a wider trench with concrete for the convenience of laying brick below ground.
    The least thickness of a concrete strip foundation is determined in part by the size of the aggregate used in the concrete, the need for a minimum thickness of concrete so that it does not dry too quickly and lose strength and to avoid failure of the concrete by shear.

    If the thickness of a concrete strip foundation were appreciably less than its projection each side of a wall the concrete might fail through the development of shear cracks by the weight of the wall causing a 45° crack as illustrated in Fig. 7. If this occurred the bearing surface of the foundation on the ground would be reduced to less than that necessary for stability.

    Shear failure

    Shear is caused by the two opposing forces of the wall and the ground acting on and tearing or shearing the concrete as scissors or shears cut or shear materials apart.