damp-proof membrane

  • Walls Resistance to weather and ground moisture

    A requirement of the Building Regulations is that walls should adequately resist the passage of moisture to the inside of the building. Moisture includes water vapour and liquid water. Moisture may penetrate a wall by absorption of water from the ground that is in contact with foundation walls or through rain falling on the wall.

    To prevent water, which is absorbed from the ground by foundation walls, rising in a wall to a level where it might affect the inside of a building it is necessary to form a continuous, horizontal layer of some impermeable material in the wall. This impermeable layer, the damp-proof course, is built in, some 150 mm above ground level, to all foundation walls in contact with the ground and is joined to the damp-proof membrane in solid ground floors as described and illustrated in Chapter 1.

    The ability of a wall to resist the passage of water to its inside face depends on its exposure to wind driven rain and the construction of the wall. The exposure of a wall is determined by its location and the extent to which it is protected by surrounding higher ground, or sheltered by surrounding buildings or trees, from rain driven by the prevailing winds. In Great Britain the prevailing, warm westerly winds from the Atlantic Ocean cause more severe exposure to driving rain along the west coast of the country than do the cooler easterly winds on the east coast.

    British Standard 5628: Part 3 defines five categories of exposure as: very severe; moderate/severe; sheltered/moderate; sheltered; and very sheltered. A map of Great Britain, published by the Building Research Establishment, shows contours of the variations of exposure across the country. The contour lines, indicating the areas of the categories of exposure, are determined from an analysis of the most severe likely spells of wind driven rain, occurring on average every 3 years, plotted on a 10 km grid. The analysis is based on the ‘worst case’ for each geographical area, where a wall faces open country and the prevailing wind, such as a gable end wall on the edge of a suburban site facing the prevailing wind or a wall of a tall building on an urban site rising above the surrounding buildings and facing the prevailing wind.

    Where a wall is sheltered from the prevailing winds by adjacent high ground or surrounding buildings or trees the exposure can be reduced by one category in sheltered areas of the country and two in very severe exposure areas of the country. The small-scale and large-scale maps showing categories of exposure to driving rain provide an overall picture of the likely severity of exposure over the country. To estimate the likely severity of exposure to driving rain, of the walls of a building on a particular site, it is wise to take account of the categories of exposure shown on the maps, make due allowance for the overlap of categories around contour lines and obtain local knowledge of conditions from adjacent buildings and make allowance for shelter from high ground, trees and surrounding buildings.

    The behaviour of a wall in excluding wind and rain will depend on the nature of the materials used in the construction of the wall and how they are put together. A wall of facing bricks laid in mortar will absorb an appreciable amount of the rain driven on to it so that the wall must be designed so that the rain is not absorbed to the inside face of the wall. This may be effected by making the wall of sufficient thickness, by applying an external facing of say rendering or slate hanging, or by building the wall as a cavity wall of two skins or leaves with a separating cavity.

    A curtain wall of glass (see Volume 4) on the other hand will not absorb water through the impermeable sheets of glass so that driving rain will pour down the face of the glass and penetrate the joints between the sheets of glass and the supporting frame of metal or wood, so that close attention has to be made to the design of these joints that at once have to be sufficiently resilient to accommodate thermal movement and at the same time compact enough to exclude wind and rain.

    It is generally accepted practice today to construct walls of brick, stone or blocks as a cavity wall with an outer and inner leaf or skin separated by a cavity of at least 50 mm. The outer leaf will either be sufficiently thick to exclude rain or be protected by an outer skin of rendering or cladding of slate or tile and the inner leaf will be constructed of brick or block to support the weight of floors and roofs with either the inner leaf providing insulation against transfer of heat or the cavity filled with some thermal insulating material.

  • Resistance to the passage of heat

    The requirements of the Building Regulations and practical advice in Approved Document L include provision for insulation to some ground floors. The requirement is that ground floors should have a maximum insulation value (U value) of 0.45 W/m2K. Some ground floor slabs that are larger than 10 m in both length and breadth may not need the addition of an insulating layer to provide the U value of 0.45.

    Of the heat that is transferred through a solid, ground supported floor a significant part of the transfer occurs around the perimeter of the floor to the ground below, foundation walls and ground around the edges of the floor, so that the cost of insulating the whole floor is seldom justified. Insulation around or under the edges of a solid floor will significantly reduce heat losses to the extent that overall insulation is unnecessary.
    In the CIBS guide to the thermal properties of building structures, the U value of an uninsulated solid floor 20 x 20 m on plan, with four edges exposed, is given as 0.36 W/m2K and one 10 x 10 m as 0.6W/m2K. The 20 x 20 floor has a U value below that in the requirement of the Building Regulations and will not require insulation. The U value of a 10 m2 floor can be reduced by the use of edge insulation. With edge insulation of a metre deep all around and under the floor, the U value can be reduced to 0.48W/m2K which is somewhat higher than the U value in the requirement of the Building Regulations and may necessitate some small overall insulation. This is the basis for the assumption that floor slabs that are larger than 10 m in both length and width may not need an overall insulation layer.
    Edge insulation under concrete
    To reduce heat losses through thermal bridges around the edges of solid floors that do not need overall insulation, and so minimise problems of condensation and mould growth, it may be wise to build in edge insulation, particularly where the wall insulation is not carried down below the ground floor slab. Edge insulation is formed either as a vertical strip between the edge of the slab and the wall or under the slab around the edges of the floor as illustrated in Fig. 32. The depth or width of the strips of insulation vary from 0.25 m to 1 m and the thickness of the insulation will be similar to that needed for overall insulation.
    Perimeter insulation to ground slab
    The only practical way of improving the insulation of a solid ground floor to the required U value is to add a layer of some material with a high insulation value to the floor. The layer of insulation may be laid below a chipboard or plywood panel floor finish or below a timber boarded finish or below the screed finish to a floor or under the concrete floor slab. With insulation under the screed or slab it is important that the density of the insulation board is sufficient to support the load of the floor itself and imposed loads on the floor. A density of at least 16kg/m3 is recommended for domestic buildings.

    The advantage of laying the insulation below the floor slab is that the high density slab, which warms and cools slowly (slow thermal response) in response to changes in temperature of the constant low output heating systems, will not lose heat to the ground. The damp-proof membrane may be laid under or over the insulation layer or under the floor screed. The damp-proof membrane should be under insulation that absorbs water and may be over insulation with low water absorption and high resistance to ground contaminants.

    With the insulation layer and the dpm below the concrete floor slab it is necessary to continue the dpm and insulation up vertically around the edges of the slab to unite with the dpc in walls as illustrated in Fig. 33.
    One method of determining the required thickness of insulation is to use a thickness of insulation related to the U value of the chosen insulation material, as for example thicknesses of 25 mm for a U value of 0.02W/m2K, 37 mm for 0.03 W/m2K, 49 mm for 0.04W/m2K and 60 mm for 0.05 W/m2K, ignoring the inherent resistance of the floor.
    dpm under insulation and screed

    Another more exacting method is to calculate the required thickness related to the actual size of the floor and its uninsulated U value, taken from a table in the CIBS guide to the thermal properties of building structures. For example, from the CIBS table the U value of a solid floor 10 x 6 m, with four edges exposed is 0.74W/m2K.
    Resistance to the passage of heat
    These thicknesses are appreciably less than those given by the first method, shown in brackets.
    Where the wall insulation is in the cavity or on the inside face of the wall it is necessary to avoid a cold bridge across the foundation wall and the edges of the slab, by fitting insulation around the edges of the slab or by continuing the insulation down inside the cavity, as illustrated in Fig. 34.
    An advantage of fitting the dpm above the insulation is that it can be used to secure the upstand edge insulation in place while concrete is being placed.
    dpm under insulation and screed2
    The disadvantage of the dpm being below the concrete floor slab is that it will prevent the wet concrete drying out below and so lengthen the time required for it to adequately dry out, to up to 6 months. A concrete floor slab that has not been sufficiently dried out may adversely affect water sensitive floor finishes such as wood.

    The advantage of laying the insulation layer under the screed is that it can be laid inside a sheltered building on a dried slab after the roof is finished and that the dpm, whether over or under the insulation layer, can more readily be joined to the dpc in walls, as illustrated in Fig. 34. Where the wall insulation is in the cavity it should be continued down below the floor slab to minimise the cold bridge across the wall to the screed as illustrated in Fig. 34.
    dpm under insulation and screed21
    If the dpm is laid below the insulation it is necessary to spread a separating layer over the insulation to prevent wet screed running into the joints between the insulation boards. The separating layer should be building paper or 500 gauge polythene sheet.

    To avoid damage to the insulation layer and the dpm it is necessary to take care in tipping, spreading and compacting wet concrete or screed. Scaffold boards should be used for harrowing and tipping concrete and screed and a light mesh of chicken wire can be used over separating layers or dpms over insulation under screeds as added protection.

  • Mastic asphalt or pitch mastic

    These materials are spread hot and finished to a thickness of at least 12.5 mm. This expensive damp-proof membrane is used where there is appreciable water pressure under the floor and as ‘tanking’ to basements as described in Volume 4.

  • Polythene and polyethylene sheet

    Polythene or polyethylene sheet is commonly used as a damp-proof membrane with oversite concrete for all but severe conditions of dampness. It is recommended that the sheet should be at least 0.25 mm thick (1200 gauge). The sheet is supplied in rolls 4 m wide by 25 m long. When used under concrete oversite the sheet should be laid on a blinding layer of sand or compacted fuel ash spread over the hardcore.

    The sheets are spread over the blinding and lapped 150 mm at joints and continued across surrounding walls, under the dpc for the thickness of the wall.

    Where site conditions are reasonably dry and clean, the overlap joints between the sheets are sealed with mastic or mastic tape between the overlapping sheets and the joint completed with a polythene jointing tape as illustrated in Fig. 29.
    Jointing laps in polythene sheet
    For this lapped joint to be successful the sheets must be dry and clean else the jointing tape will not adhere to the surface of the sheets and the joint will depend on the weight of the concrete or screed pressing the joint sufficiently heavily to make a watertight joint. As clean and dry conditions on a building site are rare, this type of joint should be only used where there is unlikely to be heavy absorption of ground moisture.
    Where site conditions are too wet to use mastic and tape, the joint is made by welting the overlapping sheets with a double welted fold as illustrated in Fig. 30, and this fold is kept in place by weighing it down with bricks or securing it with tape until the screed or concrete has been placed. The double welt is formed by folding the edges of sheets together and then making a welt which is flattened.
    Double welted fold joint in polythene sheet
    The plastic sheet is effectively impossible to fold and so stiff and elastic that it will always tend to unfold so that it requires a deal of patience to fold, hold in place and then contrive to fold along the joint. By using the maximum size of sheet available it is possible to minimise the number of joints.

    The sheet should be used so that there are only joints one way as it is impractical to form a welt at junctions of joints.
    Where the level of the damp-proof membrane is below that of the dpc in walls it is necessary to turn it up against walls so that it can overlap the dpc or be turned over as dpc as illustrated in Fig. 31. To keep the sheet in place as an upstand to walls it is necessary to keep it in place with bricks or blocks laid on the sheet against walls until the concrete has been placed and the bricks or blocks removed as the concrete is run up the wall.
    Damp proof membrane turn up
    At the internal angle of walls a cut is made in the upstand sheet to facilitate making an overlap of sheet at corners. These sheets which are commonly used as a damp-proof membrane will serve as an effective barrier to rising damp, providing they are not punctured or displaced during subsequent building operations.

  • Materials for damp-proof membrane

    The materials used as damp-proof membrane must be impermeable to water both in liquid and vapour form and sufficiently robust to withstand damage by later building operations.

  • Oversite concrete

    When Portland cement was first continuously produced, towards the end of the nineteenth century, it became practical to cover the site of buildings with a layer of concrete as a solid level base for floors and as a barrier to rising damp. From the early part of the twentieth century it became accepted practice to cover the site of buildings with a layer of concrete some 100 mm thick, the concrete oversite or oversite concrete. At the time, many ground floors of houses were formed as raised timber floors on oversite concrete with the space below the floor ventilated against stagnant damp air.

    With the shortage of timber that followed the Second World War, the raised timber ground floor was abandoned and the majority of ground floors were formed as solid, ground supported floors with the floor finish laid on the concrete oversite. At the time it was accepted practice to form a continuous horizontal damp-proof course, some 150 mm above ground level, in all walls with foundations in the ground.

    With the removal of vegetable top soil the level of the soil inside the building would be from 100 to 300 mm below the level of the ground outside. If a layer of concrete were then laid oversite its finished level would be up to 200 mm below outside ground level and up to 350 mm below the horizontal dpc in walls. There would then be considerable likelihood of moisture rising through the foundation walls, to make the inside walls below the dpc damp, as illustrated in Fig. 24.
    Oversite concrete
    It would, of course, be possible to make the concrete oversite up to 450 mm thick so that its top surface was level with the dpc and so prevent damp rising into the building. But this would be unnecessarily expensive. Instead, a layer of what is known as hardcore is spread oversite, of sufficient thickness to raise the level of the top of the concrete oversite to that of the dpc in walls. The purpose of the hardcore is primarily to raise the level of the concrete oversite for solid, ground supported floors.
    The layer of concrete oversite will serve as a reasonably effective barrier to damp rising from the ground by absorbing some moisture from below. The moisture retained in the concrete will tend to make solid floor finishes cold underfoot and may adversely affect timber floor finishes. During the second half of the twentieth century it became accepted practice to form a waterproof membrane under, in or over the oversite concrete as a barrier to rising damp, against the cold underfoot feel of solid floors and to protect floor finishes. Having accepted the use of a damp-proof membrane it was then logical to unite this barrier to damp, to the damp-proof} course in walls, by forming them at the same level or by running a vertical dpc up from the lower membrane to unite with the dpc in walls.

    Even with the damp-proof membrane there is some appreciable transfer of heat from heated buildings through the concrete and hardcore to the cold ground below. In Approved Document L to the Building Regulations is the inclusion of provision for insulation to ground floors for the conservation of fuel and power. The requirement can be met by a layer of insulating material under the site concrete, under a floor screed or under boarded or sheet floor finishes to provide a maximum U value of 0.45 W/m2K for the floor.

    The requirement to the Building Regulations for the resistance of the passage of moisture to the inside of the building through floors is met if the ground is covered with dense concrete laid on a hardcore bed and a damp-proof membrane. The concrete should be at least 100 mm thick and composed of 50 kg of cement to not more than 0.11 m3 of fine aggregate and 0.16 m3 of coarse aggregate of BS 5328 mix ST2. The hardcore bed should be of broken brick or similar inert material, free from materials including water soluble sulphates in quantities which could damage the concrete. A damp-proof membrane, above or below the concrete, should ideally be continuous with the dpc in the walls.

    It is practice on building sites to first build external and internal load bearing walls from the concrete foundation up to the level of the dpc, above ground, in walls. The hardcore bed and the oversite concrete are then spread and levelled within the external walls.

    If the hardcore is spread over the area of the ground floor and into excavations for foundations and soft pockets of ground that have been removed and the hardcore is thoroughly consolidated by ramming, there should be very little consolidation settlement of the concrete ground supported floor slab inside walls. Where a floor slab has suffered settlement cracking, it has been due to an inadequate hardcore bed, poor filling of excavation for trenches or ground movement due to moisture changes. It has been suggested that the floor slab be cast into walls for edge support. This dubious practice, which required edge formwork support of slabs at cavities, will have the effect of promoting cracking of the slab, that may be caused by any slight consolidation settlement. Where appreciable settlement is anticipated it is best to reinforce the slab and build it into walls as a suspended reinforced concrete slab.